Question Number	Acceptable Answers	Reject	
$\mathbf{1 (a) (i)}$	o bond between C atoms	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (\text { ii) }}$	Good overlap of s orbitals in sigma bonds (1) p orbitals are parallel so poor overlap when π bonds form		2
OR (1) Overlap of orbitals in sigma bond is along the line between the two nuclei			
whereas, in the π bond, there is sideways (1) overlap Can be shown on a diagram	(1)		

Question	Acceptable Answers	Reject	Mark
Number	$\mathbf{1 (b) (i)}$	$\mathrm{CH}_{3} \mathrm{H}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	One C on the double bond has two of the same atoms/ two hydrogen atoms attached to it OR C on one end of double bond is not attached to two different atoms or groups	1	
Ignore references to restricted rotation about the C=C double bond		1	

Question Number	Acceptable Answers	Reject	Mark
1(b) (iii)	(Bromine water goes from brown/ redbrown / yellow/ orange to) colourless OR (Bromine water is) decolorised Accept any orientation Allow addition of two Br atoms Allow un-displayed CH_{3} and OH groups Allow skeletal or structural formula	To 'clear' Molecular formula	2

Question Number	Acceptable Answers	Reject	Mark
1(c)	(Colour change purple/ purple-pink / pink to) colourless OR $\left(\mathrm{KMnO}_{4}\right.$ is) decolorised Accept any orientation Allow un-displayed $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and OH groups, skeletal or structural formula	To clear Molecular formula	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d) (i)}$	(2-) methylprop(-1)ene	2- methylprop- 2-ene	

Question Number	Acceptable Answers	Reject	Mark
1(d) (ii)	 Allow methyl groups on C2 and C3 Allow complete polymer formula with square brackets and n		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e)}$	Not sustainable as (polybutene) not made from a renewable resource / Not sustainable as made from non- renewable resource / not sustainable as made from crude oil / Not sustainable as crude oil is not renewable / Not sustainable as crude oil finite resource I GNORE References to non-biodegradability / long-lasting in use		1

Total = 13 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a)}$	(Electrostatic) attraction between (bonding) electrons and nuclei/protons	J ust a 'shared pair of electrons'	$\mathbf{1}$

- IGNORE ANY INNER SHELL ELECTRONS DRAWN
- ONLY THE TOTAL NUMBERS OF ELECTRONS IN OUTER SHELLS ARE BEING ASSESSED
- ALLOW ELECTRONS TO BE ALL DOTS OR ALL CROSSES OR BOTH

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i)}$	H		
	$\bullet \times \mathrm{x}$ $\mathrm{H} \times \times \mathrm{C}$ H		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)			1

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	${ }_{x}^{x} N{ }_{x}^{\stackrel{\rightharpoonup}{x}} \mathrm{~N}$: NOTE: The lone pair of electrons on each N atom do not have to be shown as a pair		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	The + sign can be shown anywhere Ignore missing brackets Ignore if the + is missing		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i)}$	IGNORE any references to 'molecules' in this part only		2
	First mark: Location of silicon's electrons	Silicon's (outer) electrons are fixed (in covalent bonds)/ silicon's (outer) electrons are in fixed positions (in covalent bonds)/ silicon's (outer) electrons are involved in bonding	'Silicon is ionic' scores (0) for the question
Second mark: Lack of mobility of silicon's electrons	(1)		
(therefore) silicon's electrons are not free (to move)/ silicon has no free electrons/ there are no mobile electrons in silicon/ silicon has no delocalized electrons/ silicon's electrons cannot flow	(1) silicon's ions are scores (0) move' the question		

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	(The covalent) bonds are strong (throughout the lattice) (therefore) a lot of energy is required to break the bonds / a lot of energy is needed to overcome the attractions IGNORE any references to 'giant molecular'	'(simple) molecular silicon' (0) /'molecules of silicon' (0) /‘silicon has ions' (0) /'intermolecular forces' / 'van der Waals' forces'/ ‘London forces' (0) ALL THE ABOVE SCORE (0) OVERALL	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(i)			
electrons (1) charge (1) square brackets not essential Mark independently Ignore (labelling of) nucleus unless incorrect	$\mathbf{2}$		

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline \mathbf{3} \text { (a)(ii) } & \begin{array}{l}1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \\
\text { Allow electron number as sub script } \\
\text { Allow orbitals as capital letters } \\
\text { Allow TE from (a) (i) if Ca atom or Ca }\end{array}
$$ \\

\& ion\end{array}\right]\)| $\mathbf{1}$ |
| :--- |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iii)	Smaller Because it has one less (sub) shell of electrons / orbital / energy level / less shielding (1)	bigger scores zero	$\mathbf{2}$
And the ratio of protons : electrons has increased / more protons than electrons / greater net force on remaining electrons (so remainder of electrons held more closely) / greater effective nuclear charge (1)	greater nuclear charge / positive charge		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) (i v) ~}$	Any two from: Strong (electrostatic) forces / attractions / bonds (between ions) (1) (ions) held in giant lattice / many (ionic) attractions / forces / bonds (1) So large amount of energy needed (to break apart ions) (1)	Any mention of covalent or metallic bonds or atoms or molecules scores zero High temperature	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(i)	Because the ions are free to move (when a potential difference is applied)	Electrons / particles are free to move	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(ii)	The cations / barium and calcium (ions) are different sizes Ignore any discussion of reasons	Atoms are different sizes	$\mathbf{1}$
	(could select either the calcium ion because it has more water molecules associated with it OR the barium ion because it has more shells of electrons and so larger)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(iii)	Mass of calcium ions in $1 \mathrm{~kg}=0.100 \times 40(=4.0)$ (g) (1) If mass quoted must be correct to score first mark Hence 4.0 g per 1000 g of solution So ppm $=(4.0 / 1000) \times 1000000$ $=4000(\mathrm{ppm})(\mathbf{1)}$ OR Mass of calcium ions in 1 kg $=0.100 \times 40.1$ $(=4.01)(\mathrm{g})(\mathbf{1})$ Hence 4.01 g per 1000 g of solution So ppm $=(4.01 / 1000) \times 1000000$ $=4010(\mathrm{ppm})(\mathbf{1})$ Correct answer alone $=2$ marks Allow TE for second mark from incorrect mass	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)	(Sulfur / nitrogen oxides) form when (fossil) fuels are burnt / when petrol or diesel burn in vehicle engines / emissions from vehicle (engines) / volcanoes / lightning (1)	from factories alone	$\mathbf{3}$
They (react with water to) form sulfuric / sulfurous acid / nitric acid / acid rain / gases are acidic (1)	Which reacts with limestone (to form soluble compounds) / limestone and acid take part in neutralisation / dissolves building / corrodes building (1) Allow correct equation for third mark but lgnore equations if mark already awarded. lgnore comments regarding erosion		

Question Number	Acceptable Answers	Reject	Mark
3 (d)	Either Yes, as the values match closely (so little deviation from ionic model) Or no, as the values are (slightly) different so a degree of covalency / not fully ionic	100\%ionic covalent	1

